An Adaptive P1 Finite Element Method for Two-Dimensional Transverse Magnetic Time Harmonic Maxwell's Equations with General Material Properties and General Boundary Conditions

نویسندگان

  • Susanne C. Brenner
  • Joscha Gedicke
  • Li-Yeng Sung
چکیده

We present an adaptive P1 finite element method for two-dimensional transverse magnetic time harmonic Maxwell’s equations with general material properties and general boundary conditions. It is based on reducing the boundary value problems for Maxwell’s equations to standard second order scalar elliptic problems through the Hodge decomposition. We allow inhomogeneous and anisotropic electric permittivity, sign changing magnetic permeability, and both the perfectly conducting boundary condition and the impedance boundary condition. The optimal convergence of the adaptive finite element method is demonstrated by numerical experiments. We also present results for a semiconductor simulation, a cloaking simulation and a flat lens simulation that illustrate the robustness of the method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Axisymmetric Scaled Boundary Finite Element Formulation for Wave Propagation in Unbounded Layered Media

Wave propagation in unbounded layered media with a new formulation of Axisymmetric Scaled Boundary Finite Element Method (AXI-SBFEM) is derived. Dividing the general three-dimensional unbounded domain into a number of independent two-dimensional ones, the problem could be solved by a significant reduction in required storage and computational time. The equations of the corresponding Axisymmetri...

متن کامل

Free and Forced Transverse Vibration Analysis of Moderately Thick Orthotropic Plates Using Spectral Finite Element Method

In the present study, a spectral finite element method is developed for free and forced transverse vibration of Levy-type moderately thick rectangular orthotropic plates based on first-order shear deformation theory. Levy solution assumption was used to convert the two-dimensional problem into a one-dimensional problem. In the first step, the governing out-of-plane differential equations are tr...

متن کامل

Approximate local magnetic-to-electric surface operators for time-harmonic Maxwell's equations

The aim of this paper is to propose new local and accurate approximate magnetic-to-electric surface boundary operators for the three-dimensional time-harmonic Maxwell’s equations. After their construction where their accuracy is improved through a regularization process, a localization of these operators and a full finite element approximation is introduced. Next, their numerical efficiency and...

متن کامل

Spectral Finite Element Method for Free Vibration of Axially Moving Plates Based on First-Order Shear Deformation Theory

In this paper, the free vibration analysis of moderately thick rectangular plates axially moving with constant velocity and subjected to uniform in-plane loads is investigated by the spectral finite element method. Two parallel edges of the plate are assumed to be simply supported and the remaining edges have any arbitrary boundary conditions. Using Hamilton’s principle, three equations of moti...

متن کامل

Superconvergence and Extrapolation Analysis of a Nonconforming Mixed Finite Element Approximation for Time-Harmonic Maxwell's Equations

In this paper, a nonconforming mixed finite element approximating to the three-dimensional time-harmonic Maxwell’s equations is presented. On a uniform rectangular prism mesh, superclose property is achieved for electric field E and magnetic field H with the boundary condition E × n = 0 by means of the asymptotic expansion. Applying postprocessing operators, a superconvergence result is stated ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Sci. Comput.

دوره 68  شماره 

صفحات  -

تاریخ انتشار 2016